

1

Partial differential equations

- For a function of two or more variables, we can define a partial derivative
- This assumes that the variables do not depend on each other
- The total derivative may be used if one variable depends on another
- Refer to your calculus text books

3

Approximating solutions to partial differential equations

Partial derivatives

- A function $u(t, x)$ of two variables has two partial derivatives

$$
\frac{\partial}{\partial t} u(x, t)=u_{t}(x, t) \quad \frac{\partial}{\partial x} u(x, t)=u_{x}(x, t)
$$

- The definition of a partial derivative is a limit:

$$
\begin{aligned}
& \frac{\partial}{\partial t} u(x, t)=\lim _{\Delta t \rightarrow 0} \frac{u(x, t+\Delta t)-u(x, t)}{\Delta t} \\
& \frac{\partial}{\partial x} u(x, t)=\lim _{h \rightarrow 0} \frac{u(x+h, t)-u(x, t)}{h}
\end{aligned}
$$

Approximating partial derivatives

- Consequently, we can approximate all these the same way

$$
\begin{aligned}
\frac{\partial}{\partial t} u(x, t) & \approx \frac{u(x, t+\Delta t)-u(x, t-\Delta t)}{2 \Delta t} \\
\frac{\partial^{2}}{\partial t^{2}} u(x, t) & \approx \frac{u(x, t+\Delta t)-2 u(x, t)+u(x, t-\Delta t)}{(\Delta t)^{2}} \\
\frac{\partial}{\partial x} u(x, t) & \approx \frac{u(x+h, t)-u(x-h, t)}{2 h} \\
\frac{\partial^{2}}{\partial x^{2}} u(x, t) & \approx \frac{u(x+h, t)-2 u(x, t)+u(x-h, t)}{h^{2}}
\end{aligned}
$$

Functions of a vector variable

- Suppose $u(\mathbf{u})$ is a real-valued function of a vector variable
- Suppose the vector is n-dimensional
- We can approximate a partial derivative with respect to each of the n variables

$$
\frac{\partial}{\partial x_{2}} u(\mathbf{x}) \approx \frac{u\left(\left(\begin{array}{l}
x_{1} \\
x_{2}+h \\
x_{3}
\end{array}\right)\right)-u\left(\left(\begin{array}{l}
x_{1} \\
x_{2}-h \\
x_{3}
\end{array}\right)\right)}{2 h}
$$

Functions of a vector variable

- Recall that \mathbf{e}_{k} is often used to represent the $k^{\text {th }}$ canonical basis vector

$$
\mathbf{e}_{1} \approx\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad \mathbf{e}_{2} \approx\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad \mathbf{e}_{3} \approx\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

- Thus, we note that

$$
\left(\begin{array}{l}
x_{1} \\
x_{2}+h \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)+\left(\begin{array}{l}
0 \\
h \\
0
\end{array}\right)=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)+h\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\mathbf{x}+h \mathbf{e}_{2}
$$

7

Approximating solutions to partial differential equations

Functions of a vector variable

- Thus, we have that

$$
\begin{aligned}
& \frac{\partial}{\partial x_{k}} u(\mathbf{x}) \approx \frac{u\left(\mathbf{x}+h \mathbf{e}_{k}\right)-u\left(\mathbf{x}-h \mathbf{e}_{k}\right)}{2 h} \\
& \frac{\partial^{2}}{\partial x_{k}^{2}} u(\mathbf{x}) \approx \frac{u\left(\mathbf{x}+h \mathbf{e}_{k}\right)-2 u(\mathbf{x})+u\left(\mathbf{x}-h \mathbf{e}_{k}\right)}{h^{2}}
\end{aligned}
$$

Functions of a vector variable

- We will deal with real-valued functions that are parameterized by both of time and space
- Such a function will be denoted as $u(t, x)$ or $u(t, \mathbf{x})$

$$
\begin{aligned}
& \frac{\partial}{\partial t} u(\mathbf{x}, t) \approx \frac{u(\mathbf{x}, t+\Delta t)-u(\mathbf{x}, t-\Delta t)}{2 \Delta t} \\
& \frac{\partial^{2}}{\partial t^{2}} u(\mathbf{x}, t) \approx \frac{u(\mathbf{x}, t+\Delta t)-2 u(\mathbf{x}, t)+u(\mathbf{x}, t-\Delta t)}{(\Delta t)^{2}} \\
& \frac{\partial}{\partial x_{k}} u(\mathbf{x}, t) \approx \frac{u\left(\mathbf{x}+h \mathbf{e}_{k}, t\right)-u\left(\mathbf{x}-h \mathbf{e}_{k}, t\right)}{2 h} \\
& \frac{\partial^{2}}{\partial x_{k}^{2}} u(\mathbf{x}, t) \approx \frac{u\left(\mathbf{x}+h \mathbf{e}_{k}, t\right)-2 u(\mathbf{x}, t)+u\left(\mathbf{x}-h \mathbf{e}_{k}, t\right)}{h^{2}}
\end{aligned}
$$

9

Approximating solutions to partial differential equations

Conditions

- Conditions depend on the variable:
- The time variable will have initial conditions
- The space variable or variables will have boundary conditions
- If the space variable is 1-dimensional,
the boundary conditions must be specified on an interval $[a, b]$
- If the space variable is 2 - or 3-dimensional,
the boundary conditions must be specified on the boundary of 2- or 3-dimensional bounded region in space

Approximating solutions to partial differential equations

The gradient and the Laplacian

- If $u(\mathbf{x})$ is a real-valued function of a vector variable, we will define the gradient as

$$
\vec{\nabla} u(\mathbf{x})=\left(\begin{array}{c}
\frac{\partial}{\partial x_{1}} \\
\frac{\partial}{\partial x_{2}} \\
\vdots \\
\frac{\partial}{\partial x_{n}}
\end{array}\right) u(\mathbf{x})=\left(\begin{array}{c}
\frac{\partial}{\partial x_{1}} u(\mathbf{x}) \\
\frac{\partial}{\partial x_{2}} u(\mathbf{x}) \\
\vdots \\
\frac{\partial}{\partial x_{n}} u(\mathbf{x})
\end{array}\right)
$$

The gradient and the Laplacian

- If $u(\mathbf{x})$ is a real-valued function of a vector variable, we will define the Laplacian as

$$
\vec{\nabla} \cdot \vec{\nabla} u(\mathbf{x})=\left(\begin{array}{c}
\frac{\partial}{\partial x_{1}} \\
\frac{\partial}{\partial x_{2}} \\
\vdots \\
\frac{\partial}{\partial x_{n}}
\end{array}\right) \cdot\left(\begin{array}{c}
\frac{\partial}{\partial x_{1}} u(\mathbf{x}) \\
\frac{\partial}{\partial x_{2}} u(\mathbf{x}) \\
\vdots \\
\frac{\partial}{\partial x_{n}} u(\mathbf{x})
\end{array}\right)=\frac{\partial^{2}}{\partial x_{1}^{2}} u(\mathbf{x})+\frac{\partial^{2}}{\partial x_{2}^{2}} u(\mathbf{x})+\cdots+\frac{\partial^{2}}{\partial x_{n}^{2}} u(\mathbf{x})=\nabla^{2} u(\mathbf{x})
$$

The gradient and the Laplacian

- If $u(t, \mathbf{x})$ is a real-valued function of time and space, the gradient is only with respect to space coordinates

$$
\begin{aligned}
& \vec{\nabla} u(\mathbf{x}, t)=\binom{\frac{\partial}{\partial x_{1}} u(\mathbf{x}, t)}{\frac{\partial}{\partial x_{2}} u(\mathbf{x}, t)} \nabla^{2} u(\mathbf{x}, t)=\frac{\partial^{2}}{\partial x_{1}^{2}} u(\mathbf{x}, t)+\frac{\partial^{2}}{\partial x_{2}^{2}} u(\mathbf{x}, t) \\
& \vec{\nabla} u(\mathbf{x}, t)=\left(\begin{array}{l}
\frac{\partial}{\partial x_{1}} u(\mathbf{x}, t) \\
\frac{\partial}{\partial x_{2}} u(\mathbf{x}, t) \\
\frac{\partial}{\partial x_{3}} u(\mathbf{x}, t)
\end{array}\right) \quad \nabla^{2} u(\mathbf{x}, t)=\frac{\partial^{2}}{\partial x_{1}^{2}} u(\mathbf{x}, t)+\frac{\partial^{2}}{\partial x_{2}^{2}} u(\mathbf{x}, t)+\frac{\partial^{2}}{\partial x_{3}^{2}} u(\mathbf{x}, t)
\end{aligned}
$$

In one spatial dimension

- The gradient and Laplacian simplify to the partial derivative and second partial with respect to the one spatial variable if there is only one spatial dimension:

$$
\vec{\nabla} u(x, t)=\frac{\partial}{\partial x} u(x, t) \quad \nabla^{2} u(x, t)=\frac{\partial^{2}}{\partial x^{2}} u(x, t)
$$

15

Approximating solutions to partial differential equations

Summary

- Following this topic, you now
- Have reviewed the definition of partial derivatives
- Have seen how to approximate partial derivatives
- Understand the idea the gradient and Laplacian
- Are aware of the upcoming topics

17

Colophon

These slides were prepared using the Cambria typeface. Mathematical equations use Times New Roman, and source code is presented using Consolas. Mathematical equations are prepared in MathType by Design Science, Inc. Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and accenting the top of each other slide were taken at the Royal Botanical Gardens in October of 2017 by Douglas Wilhelm Harder. Please see
https://www.rbg.ca/
for more information.

19

Approximating solutions to partial differential equations

Disclaimer

These slides are provided for the ECE 204 Numerical methods course taught at the University of Waterloo. The material in it reflects the author's best judgment in light of the information available to them at the time of preparation. Any reliance on these course slides by any party for any other purpose are the responsibility of such parties. The authors accept no responsibility for damages, if any, suffered by any party as a result of decisions made or actions based on these course slides for any other purpose than that for which it was intended.

