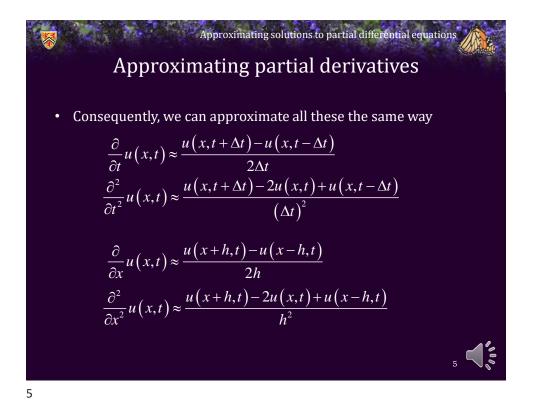
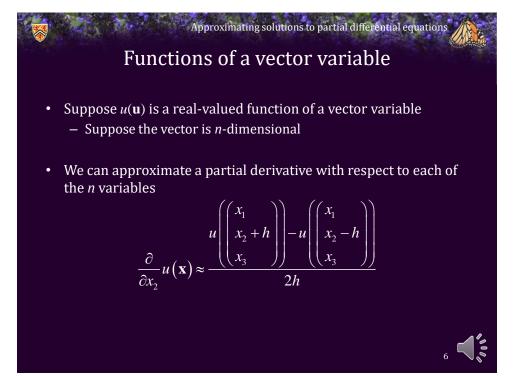
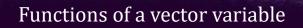


Approximating solutions to partial differential equations Partial derivatives A function u(t, x) of two variables has two partial derivatives • $\frac{\partial}{\partial t}u(x,t) = u_t(x,t) \qquad \frac{\partial}{\partial x}u(x,t) = u_x(x,t)$ - The definition of a partial derivative is a limit: $\frac{\partial}{\partial t}u(x,t) = \lim_{\Delta t \to 0} \frac{u(x,t+\Delta t) - u(x,t)}{\Delta t}$ $\frac{\partial}{\partial x}u(x,t) = \lim_{h \to 0} \frac{u(x+h,t) - u(x,t)}{h}$







Approximating solutions to partial differential equations

- Recall that \mathbf{e}_k is often used to represent the k^{th} canonical basis vector

	(1)		(0)		(0)
$\mathbf{e}_1 \approx$	0	$\mathbf{e}_2 \approx$	1	$\mathbf{e}_{3} \approx$	0
	(0)		0)	$\mathbf{e}_{3} \approx$	(1)

• Thus, we note that

$$\begin{pmatrix} x_1 \\ x_2 + h \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} 0 \\ h \\ 0 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + h \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \mathbf{x} + h\mathbf{e}_2$$

